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On functional estimates for ill-posed linear problems
R. Brigola' ) and A. Keller

Abstract: Ill-posed linear problems in Hlbert space are

considered as stochastic filtering problems. Functional

estimates of the signal x are given for the problem

Ax - y = z where A Is a linear, not necessarily bounded

operator between Hilber-t spaces and x. y. z are Hilbert

space valued random elements. As an application,

functional estimates are given explicitly for Radon trans-

formed signals with additive white noise.

1. Introduction: Let H1 and H2 be Hilbert spaces and A:H - H a linear

operator. By Hadamard's definition, a lineax problem Ax =z is well-posed if

a solution exists, is unique and depends continuously on the data z* H 2 .

Otherwise it is called ill-posed.

Deterministic regularization methods for ill-posed problems have been

extensively treated in literature, starting from the work of A. N. Tichonov

and V. Ya. Arsenin [12]. Further references may be found in [6] or [7]. for

instance. Since an equation Ax=z often decribes a functional relationship

between an unknown state x and an observation z, which may be affected

with random additive noise, ill-posed problems have also been considered as

stochastic filtering problems Ax+)'=z, where x, y, z are Hilbert space

valued random elements. For bounded linear transformations A, defined

ever)-here in H,, stochastic solutions for these equations, depending on

various models for the noise y, have been studied in the work of J. N.

Franklin [2]. V. Friedrich and A. Uhlig [3].

In this work, we will consider linear transformations A which are not necessa-

rily bounded or defined everywhere in H,, and obtain estimates for a given

class of linear functionals of the signal x, given an observation z= Axv,

where y is a noise on H2 with positive definite covariance. Signal and noise

will be assumed to be zero-mean, Gaussian, weak random variables on H

resp. H2 .

r
1) The first author's research has been supported by A.YOSR Contract

y: . : 9! : 2 c
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2. D, - best, linear eastlmas Itn an operator clu a A

Let H, and H2 be Hilbert spaces and A: D --- H2 be a linear operator with

domain of definition DAc HI, and A': DA. - )-H i be its formally adjoint

operator, i. e. <Ax,y> = <x,A'y> for x E DA and y DA. cf. [13] ).

Here <.,.> denotes the inner product in HI resp. H2'
Furthermore, let the signal x be a zero-mean, Gaussian, H I-valued weak

random variable (cf. [']) with covariance operator B, and the noise y be a

zero-mean, Gaussian, H 2-valued weak random variable with positive definite

covariance operator C. Signal and noise are assumed to be independent, i. e.

to have independent finite dimensional distributions.

Given an obser-'ation z=Ax-y, we look for a functional h2  H2 of the obser-

vation z to estimate a given functional <x,g>, gEHJ, of the signal. More

generally, given a subspace Dj of H1 , we look for an estimation operator L:

H -- H., transforming the given functionals in D1 into functionals in H.,

such that <z,Lg> is a least squares estimate for (x,g> simultaneously for all

g T D* Therefore we define:

Definition (2.1):

Let .A c i L: H I - H 2 L linear and DI c D be a given class of admissible

es:imazjon operators.

1) For g tDP the risk r,(L) of L(A is given by

rg(L) = E ( i<z.Lg> - <x.g> 12

2) Lo E A is called D -best. linear estimator for x in A if simultaneously for

all geDI and L(A it holds:

rg(L o) • rg(L).

It will become clear from the following, that certain restrictions have to be

imposed on the class of admissible estimation operators to obtain well-de-

fined domains of definition for the estimations, since we deal with un-

bounded operators, generally not defined everywhere in the Hilbert spaces

H1 or H2 '.

Now, let r := BA'(ABA' - C) -1 on its natural domain of defirtion. If we *

denote the covaiance operator of z by K:zABA' C, then K is one-to-one,

since C is positive definite and B is positive sermidpieinite. Therefore r is

well-defined and for its domain of definition Dr it holds:

Dr = rg(K) K(DABA. ), .

since D, = DABA. C DBA.. Also, f' K' AB = (ABA' - C) -1 AB is well-de-

2-



fined on its natural domain. Here rg(K) denotes the range of K.
Lemma.. (2.2):

Let rg(A') c D c Dr.. Then the following statements hold:

1) D, DAB

2) B(DI) c DA 

3) AB(D) c rg(K)
4 ) DK = DA '

5) r is formally adjoint to F' 1 D,

Proof:

The statements I) - 3) follow immediately from the assumption D1 c Dr.

Statement 4) follows from 1) and the assumption rg(A') c D1, and 5) from

the definition of r and F.

Theorem (2.3):

Let r' := (ABA' -C) ° AB and rg(A') c DI c D

Then F is the D, -best, linear estimator for x in

A : L: D, - D. L linear and rg(ABK * C) c DL.}.

Proof:

first, we state that F" ( A:

r' is defined on D, and by Lemma (2.2), 3) and 4) we obtain

F'(D) K=1 AB(D,) c DK DA . The formally adjoint F of r' is defined on

rg(K), thus ' ( .

The risk of an arbitrary L( A for fixed g E D1 is given by

rg(L) = E(<x,g> - <z,Lg>I) = ECI<x, g-A'Lg> 12)

- E(<x,g -A'Lg> <yg)- E(<x, g-A'Lg> < y,Lg>E CyLg> 1 2).

By the assumption that x and y are zero-mean and independent, we have

rg(L) = <Bg.g> - <BA'Lg,A'Lg> - <BA'Lg,g> - <Bg,A'Lg> + <CLgLg> .

Since by Lemma (2.2), rg(A') c D, c DAB and AB(DI) c rg(K), and since l
rg(K) c DL. . we obtain:

rg(L) = <Bgg> + <ABA'Lg.Lg> - <CLg,Lg> - <BA'Lg,g> - <L'ABg,g>

= <Bg,g> + <L'KLg,g> - <BA'Lgg> - <L'ABg,g>

Thus, comparing the risk of L with the risk of r, it follows:

rg(L) - rg(r') = <L'KLg,g> - <rKr'g,g) - <BA'Lg,g> - <L'ABg,g>

- <BA'r'g,g> + <rABg,g>.

Using FK BA' on DA. =DK and KrF AB on D, we have:

-3-
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rg(L) - rg(r) = <L'KLg,g> - <L'Kr'g,g> - <(fKLg,g> - <rKr'g,g>

<(L'-r)K(L'-r)g,g>

eventually we have rg(r') ' rg(L), since K is positive definite.

Remark (2.4):

The operator class A, which we have used, is maximal in the following S

sense:

1) For an element L t A, the condition DI c DL is necessary to define <z,Lg>,

and L(D,) c DA. is necessary for <x,A'Lg> to exist for all g DI.

2) For L ( A, the existence of a formally adjoint L' with DL. D rg(K) is used

to ensure comparability of the elements of A with respect to the risks rg,

gED.

3. Avplicatioru unctlonal estimates for noisy Radon transformed slunals

A well-known ill-posed linear problem is Radon's integral equation (cf. [10]).

The Radon transform has technically been used in Computational Axial

Tomography for the reconstruction of a density function from its integrals

along hyperplanes. This application motivates, in spite of known inversion

formulas, a stochastic treatment, because one has only finitely many data,

which additionally may be affected with measurement errors, and the un-

known density is in time randomly dependent on body functions of the

patient, for instance slight motions during measuring.

We will use the following notations.

Definition (3.1):

Let L'(R n ) be the space of Lesbegue-integrable functions on R n , n2 2,

ft L' ( R r), S n- ' the unit sphere in R' and H(pq) { x : <x~q> p},

(pjq) .xS n -1 , a hyperplane in Rn .

Then :he Radon transform Rf of f is defined by

R.f(p,q) f f(x) m(dx),
H{(p.q),.,-

where dm is the (n-l)-dimensional Lesbegue measure on H(p.q).

According to [11], the Radon transform is not a continuous operator on the

whole of L2 (Rn), the Hilbert space of square integrable functions.

To use the above concept of functional estimation for the problem Rx yz,

we will make the following assumptions:

i) Let H = L2 (R) and H :=L 2 (RxSn-1), endowed with the usual inner

4-



products, n > 2 a fixed integer.

ii) If ?(Rn ) denotes the Schwartz space of rapidly decreasing functions on

Rn we identify (Rn) with a subspace of L2 (Rn), and consider the

Radon transform R as operator from L2 (Rn) into L2 (RxS n -1 ) with

DR D fURW), (cf. [8]). _

iii) The observation z is assumed to be z : Rx y, where the signal x is

assumed to be a zero-mean, Gaussian, H -valued random element, which

is stationary, i. e. its covarince operator B is given by:

-gBh> J f b(iq - sli) g(q) 1T.() dqds , g,ht ),R
[R" Rn

for some bi '(R), (cf. [5]).
iv) The noise y is assumed to be zero-mean, Gaussian white noise on

L2qR)Sn'i), i. e. a weak random variable with covariance operator 021,
wit h I the identity operator on L(fR-sn-').

v) The signal and the noise are assumed to be independent.

vi) Let the class D, of functionals, estimates are asked for, be given by
( R ).

We will need the following definitions and relations between Radon, Fourier

and Hilbert transforms.

DefLnition (3.2):

1) Let c:=
2(2-,) v,

2) The multip!ication operators Mk: f(R.S n - ,) -- L2 (RxS n -I) resp. S

Mk: f(Rn) - L2 (Rn) are defined for k : I by:

.Mk h p, q) := !pjk -I h(p,q), (p, q),f R S" -  h, .(R-S n - ' )

S qk g{x) := I'XIIk - 1 g(x), x ( R'n, g f(n)

3) ) W I 's') e- 1 ds , x t n ,

i. e. 0 is the power spectral density of the signal x (cf. [51. .

Since ) * f(R n ) and depends only on the norm of its argument,

9(r) - ¢(xI.), r =Ex, x R', is well-defined. Of course, 4 and p are non-

negative.

-.K % 5 - ** ; ,i, ~ ,



4) The multiplication operator M : (R n ) f 1(R n ) is defined by:

M g: . g , g,-([Rn).-
A I' f(p)

5) By Hf(t) : f : -(P dp , t ,R, fc (Rn), the Hilbert transform is de-

noted (cf. [9]).

6) For g f (RxSn-'), (p,q) i R x S' - ', the operator V is defined by:

Vg(p,q) "= c (4a) g(p,q) for odd n

c i H( )n=g(p,q) for even n

(cf. [8]).

Lemma (3.3):

Let R be the Radon transform and T be the Fourier transform on L2(Rn).

Then the following statements hold:

I) For (p,q)(RxS n - ', f L('(Rn)L 2 ( LRn),

Rf(p.q) = (2 ) f Tff(rq)e' dr
R

2) f(x) = (2-.) - ' f f f(s) e< S - X' ' > ds ds' , for x( Rn , f L2 (Rn).

Rn Rn

The proof is straight forward and left to the reader.

Lemma (3.4):

1) R(.R)) c

2) The adjoint R! of the Radon transform R is defined on V7R(?(Rr)). where

V is the differential operator from definition (3.2), and R'N,"R I, the

identity on P(Rn).

For the proof it is referred to [8].

Lemma (3.5):

If f. denotes the Fourier transform of a function in the variable pi R, then:
1)V= c Pl \I n 1:p on f ( RxS n - ')  

%_

2) T -'M -F;) = =R F- -Vk 7 on f(R')

3) VR = cR F5Mn F on fRn)

For the proof of assertion 1), it is referred to [8]. Assertion 2) and 3) follow

immediately from Lemma (3.3) and assertion 1).

-6



Lemma (3.6):

For the covariance operator B of the signal x, it holds:

B :Y-1 M Ton ?(Rn)

Proof:

For given g (Rn), ht L2 (Rn ) we have: .

<Bg,h) : b( s - q 11) g(q) h(s) dq ds
Rn ,p

n

= (2)-n  b(ls -q ) Tg(u) e<u'q> du Jfh(v) e-J <v's> dv dqds
Rn Rn  /Rn  Rn

=(2-, )nJ(J fg(u.) 0uM e i(u-vs> du ds )Th(v) dv

Rn Rn R n

where the last equality holds by Fubini's theorem, the well-known substi-

tution rule for integrals, and by definition of 0.

Thus, by Lemma (3.3), 2) we obtain:

<Bg,h> Tg(v) O(v)h(') dv = <MOTg,Th>,

which proves the assertion.

Now, we can calculate best functional estimates for functionals in MY'),

according to theorem (2.3), given the problem Px-y z under the above

assumptions:

Theorem (3.7):

1) The operator r': Dr. - L2(RS,-1 ), definel. by r: (RR- c 2 1) RB,

gives a .(Rn)-best, linear estimator for x in the sense of definition (2.1)

within the class:

{ L: .(Rn) - rg(R) L linear and rg(RBR' + C.l ) c DL. .

Here, V is the operator from definition (3.2). 'U.

2) For (p,q) R x S - and g f(Rn), it holds:

f - , 1 ,-o~l,

r'g(p.q) = (27:), -  :r ' grq) ei'rp  dr ._
f 2 (27) n-1 p C r,) 2 iri n -i IS':."

Proof:

Clearly, I (o 0) is positive definite, and by Lemma (3.4):
rg(R'): R'VR(. (R n)) f .(R n ) :D .  ,

=' 'V

-
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Thus, we have to show ?([Rn) D c Dr , according to theorem (2.3). Let us

state, that:

RBR" - c I = RB(VP -  0 aVR(V -R) R(B + co T-'M T) (VR) 1-

= RY- (M +c 2 F ) y (VR)-

by Lemma (3.4), (3.5) and (3.6).

Therefore, we have:
0) (RBR' - o I)VNR('J(Rr')) = R.T"' (.Me '"p c )(,(Rn))

Since 0 ( f(Rn), also the functions h. on Rn', defined by:

'Xx)
hgx :=-- 2x)lr g(x)' g f (R").
he~~~x ) (x)-co , i -  ' ,

are elements of f(Rn).

Hence, we obtain: 2
Ui) M 4) T(f (R)) C (Ma, +cc n )T f (Rn).

Therefore, application of RY-1 on both sides, Lemma (3.6) and i) yield:

,B(-(R")) c RP-' (Mo - cc 2  )Y(-(Rn)) = (RBR' + o'IIVR(f (Rn)).

Thus, we have shown, that RB(O(Rn)) c rg(RBR' o21), which implicates:

f (R n ) c Di..

Since DR. = R(f(Rn)) = rg(VR), the class A equals that one used in theorem

(2.3), from which we now obtain assertion 1).

To prove assertion 2), remark that by the above we have for g i(Rn):

P'g (RBR" - :I)-' RBg [R-' (M + co' ) (,- - R)g

= -R-M ,.c. )- R-'RBg
n

Using Lemma (3.3) and (3.6), we get:

-g =CRT M n(Mo+ .cZ2 Mfn T

Eventually, the representation of the Radon transform in Lemma (3.3) implicates

for (p,q)f RxSr' , , gE(Rn):

fg(pq) = 12.)2 - 2  T C .rq (rq) e' drJ (rq) , co 2 :rqiinr

Fg(p~q) = (2rJ) .
Z 1 r g(rq) e dr.f 2(2-.) n - ' tp(Ir!) . c in -  ]gr)e r d .

Remark (3.8):

1) Thus. the theorem says, that the evaluation fr'g(p.q)z(p,q)dpdq of the

observation z=RPx-y gives the best estimate for the weighted, total den-

sity fg(s)x(s)ds: the local density x(so), so  R
n can be approximated

-8-
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using the approximate identity as weight functional g( :(lRn). With regard ,

to the representation of r' in the proof of theorem (3,7), the estimation

error is given by:

S,~~n- I
E(;<z,r'g>- <xg>I) f 4(x) (I - 2() . (x) ) T )r-g(gx) dx

2x(2r) 
-  ()W - o2 Ix I

2) If the Radon transform is considered as a mapping between weighted

L-spaces, deterministic regularizations have been worked out by A. K.

Louis [7]. Using the above stochastic filtering method, for this case

solutions can also be obtained and be related to the result of Tichonov

regularization. This will be done elsewhere.
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